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Generalized competing Glauber-type dynamics and Kawasaki-type dynamics
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In this paper, we have given a systematic formulation of a generalized competing mechanism: The Glauber-
type single-spin transition mechanism, with probabilityp, simulates the contact of the system with the heat
bath, and the Kawasaki-type spin-pair redistribution mechanism, with probability 12p, simulates an external
energy flux. These two mechanisms are natural generalizations of Glauber’s single-spin flipping mechanism
and Kawasaki’s spin-pair exchange mechanism respectively. On the one hand, the proposed mechanism is, in
principle, applicable to arbitrary systems, while on the other hand, our formulation is able to contain a
mechanism that just directly combines single-spin flipping and spin-pair exchange in their original form.
Compared with the conventional mechanism, the proposed mechanism does not assume the simplified version
and leads to a greater influence of temperature. The fact, order for lower temperature and disorder for higher
temperature, will be universally true. In order to exemplify this difference, we applied the mechanism to the
one-dimensional Ising model and obtained analytical results. We also applied this mechanism to the kinetic
Gaussian model and found that above the critical point there will be only paramagnetic phase, while below the
critical point, the self-organization as a result of the energy flux will lead the system to an interesting het-
erophase, instead of the initially guessed antiferromagnetic phase. We studied this process in details.

DOI: 10.1103/PhysRevE.66.036106 PACS number~s!: 05.50.1q, 05.70.Ln, 64.60.Cn, 64.60.Ht
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I. INTRODUCTION

In recent years, there have been continuing efforts
wards a clear picture of the self-organization phenomen
the phase transitions of magnetic systems. Most of the wo
@1–8# have been concentrated on Ising and Ising-like s
tems, governed by two competing dynamics: Glaube
single-spin flipping mechanism@9# and Kawasaki’s spin-pai
exchange mechanism@10#, both with a probability. The sys
tem is coupled to a heat bath at a given temperature w
being subject to an external energy flux. Glauber’s flipp
mechanism is to simulate the contact of the system with
heat bath. Changing the order parameter, it favors lower
tem energy. On the other hand, Kawasaki’s exchange me
nism is to simulate the influence of the energy flux. Keep
the order parameter conserved, it favors higher system
ergy. With these two competing mechanisms and the co
sponding master equation, people expect to obtain the
lution of the system. As an exact treatment is not possible
the two-dimensional~2D! Ising model, consequently Mont
Carlo ~MC! simulation and methods such as the dynam
pair approximation have been employed. The results
tained helped to determine the interesting phase diagra
~However, people are surprised to find contradictions in
predictions of MC simulations and the dynamical mean-fi
theory, since both are proved capable of yielding good qu
tative results in other studies. Though revisions of MC sim
lations are made and more accurate versions of the m
field theory are presented, the puzzle still remains@6#.!

*Author to whom correspondence should be addressed. De
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In our earlier studies, we have presented a single-s
transition mechanism@11,12# and a spin-pair redistribution
mechanism@13#. These two dynamics are natural generaliz
tions of Glauber’s single-spin flipping mechanism and K
wasaki’s spin-pair exchange mechanism, respectively. T
have similar mathematical expressions, and become cou
parts of each other in the nonconserved and conserved
cesses, respectively. As an example of the applications,
studied the kinetic Gaussian model with both of them. O
study shows that, in translational-invariant lattices,the dy-
namic critical exponent z51/v52 is independent of spac
dimensionality and the governing dynamical mechanism. Its
dynamic properties are summarized in Sec. IV.

In this paper, we formulate the competing dynamics co
bining the single-spin transition and spin-pair redistributio
As these two mechanisms themselves are universal, the c
bined one is also applicable to arbitrary systems, and it
be deemed as a generalization. In Sec. II, we first brie
review the two mechanisms and then give the formulation
the competing mechanism. In Sec. III, we explain the diff
ences between our mechanism and that adopted conven
ally, taking the 1D Ising model as an example. In Sec. IV,
the chief task of this paper, we apply it to the kinetic Gau
ian model and report the findings. In Sec. V we summar
our study with some discussions.

II. THE COMPETING MECHANISM

First we briefly review the single-spin transition mech
nism and the spin-pair redistribution mechanism.

A. Single-spin transition mechanism

Glauber’s single-spin flipping mechanism allows an Isi
system to evolve with spin flipping. In single-spin transitio

rt-
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mechanism@11,12#, a single spins i may change itself to any
possible values,ŝ i , and the master equation is

d

dt
P~$s%,t !52(

i
(
ŝ i

@Wi~s i→ŝ i !P~$s%,t !

2Wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ,t !#. ~1!

The transition probability is in a normalized form determin
by a heat Boltzmann factor,
a
in

e
th

m

he

f

03610
Wi~s i→ŝ i !5
1

Qi
expF2bHi S ŝ i ,(̂

i j
L s j D ,

Qi5(
ŝ i

expF2bHi S ŝ i ,(̂
i j &

s j D G . ~2!

One can clearly see that this mechanism favors a lo
Hamiltonian of the system. Based on the master equat
Eq. ~1!, one can prove that the time expectations of sin
spin and correlation functions are
d

dt
^s i 1

~ t !s i 2
~ t !•••s i n

~ t !&52n^s i 1
s i 2

•••s i n
&1(

$s% H (
k51

n F S )
j (Þk)51

n

s i j D S (
ŝ i k

ŝ i k
Wi k

~s i k
→ŝ i k

!D G J P~$s%,t !. ~3!
ion
-

tact
tion

u-
Whenn51, it is

d

dt
qk~ t !52qk~ t !1(

$s%
F(

ŝk

ŝkWk~sk→ŝk!GP~$s%;t !.

~4!

B. Spin-pair redistribution mechanism

Kawasaki’s spin-pair exchange mechanism allows
Ising system to evolve with its nearest neighbors exchang
their spin values. In spin-pair redistribution mechanism@13#,
two neighboring spins,s js l , may change to any possibl
values, ŝ j ŝ l , as long as their sum is conserved, and
master equation is

d

dt
P~$s%,t !5(̂

j l &
(

ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !P~$s%;t !

1Wjl ~ ŝ j ŝ l→s js l !

3P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#. ~5!

The redistribution probability is also in a normalized for
determined by a heat Boltzmann factor,

Wjl ~s js l→ŝ j ŝ l !5
1

Qjl
ds j 1s l ,ŝ j 1ŝ l

3exp@2bHj l ~ ŝ j ,ŝ l ,$sm%mÞ j ,l !#, ~6!

where the normalization factorQjl is

Qjl 5 (
ŝ j ,ŝ l

ds j 1s l ,ŝ j 1ŝ l
exp@2bHj l ~ ŝ j ,ŝ l ,$sm%mÞ j ,l !#.

~Here it clearly favors a lower system Hamiltonian, but in t
combined mechanism we shall change the sign beforebHj l
and make it turn to the opposite.! The time expectation o
single spin is
n
g

e

d

dt
qk~ t !522dqk~ t !1(

w
(
$s%

F (
ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !, ~7!

whered is the space dimensionality and(w means a sum-
mation taken over the nearest neighbors.

C. The competing mechanism

With the competing mechanisms, single-spin transit
with probabilityp and spin-pair redistribution with probabil
ity 12p, the master equation can be written as

d

dt
P~$s%,t !5pGme1~12p!Kme, ~8!

where the Glauber type

Gme5(
i

(
ŝ i

@2Wi~s i→ŝ i !P~$s%,t !

1Wi~ ŝ i→s i !P~$s j Þ i%,ŝ i ;t !#, ~9!

and the Kawasaki type

Kme5(̂
j l &

(
ŝ j ,ŝ l

@2Wjl ~s js l→ŝ j ŝ l !P~$s%;t !

1Wjl ~ ŝ j ŝ l→s js l !P~$s iÞ j ,s lÞk%,ŝ j ,ŝ l ;t !#. ~10!

The Glauber-type mechanism is used to simulate the con
of the system with the external heat bath, and the transi
probability is of the form given by Eqs.~2!. This mechanism
favors lower energy of the system. The spin-pair redistrib
6-2
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GENERALIZED COMPETING GLAUBER-TYPE DYNAMICS . . . PHYSICAL REVIEW E 66, 036106 ~2002!
tion mechanism is used to simulate the energy flux. The
distribution probability given above favors a lower syste
Hamiltonian, but what we need here is to the contrary.We
can reverse this tendency if we change the sign beforebHj l
in the redistribution probability.It has the following form:

Wjl ~s js l→ŝ j ŝ l !

5
1

Qjl
ds j 1s l ,ŝ j 1ŝ l

exp@bHj l ~ ŝ j ,ŝ l ,$sm%mÞ j ,l !#,

~11!

Qjl 5 (
ŝ j ,ŝ l

ds j 1s l ,ŝ j 1ŝ l
exp@bHj l ~ ŝ j ,ŝ l ,$sm%mÞ j ,l !#.

This normalized form implies that the tendency is toward
higher system Hamiltonian. Thecompetitionis in fact be-
tween the two opposite directions favored by eithermecha-
nism.

As given above, we have already obtained the expecta
of single spin with either mechanism. One can prove t
with competing mechanisms it will be

d

dt
qk~ t !5pQk

G1~12p!Qk
K , ~12!

where the Glauber type

Qk
G52qk~ t !1(

$s%
F(

ŝk

ŝkWk~sk→ŝk!GP~$s%;t !,

~13!

and the Kawasaki type

Qk
K522dqk~ t !1(

w
(
$s%

F (
ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !. ~14!

There are equations available for correlation functions w
competing mechanisms, but in later studies we find t
single-spin equation is enough to yield satisfying results.

III. ISING MODEL

As mentioned above, recently great efforts have been c
tributed to the Ising model with competing dynamics. B
cause exact analytical treatment is too hard, most of the s
ies have been either approximations or Monte Ca
simulations. There are some differences between the con
tional method and our method. In the following we prese
our considerations.

The results one may expect directly depend on the exp
sion of the transition~flipping, exchange, redistribution!
probabilities. We think that there are two requirements: Fi
this probability should contain the Hamiltonian, and th
naturally favors either higher energy~Kawasaki type! or
lower energy~Glauber type!. Second, introducing tempera
03610
e-

a

n
t

h
is

n-
-
d-
o
n-
t

s-

t,

ture into it, we require that the transition be influenced by
heat noise. It is the first requirement that makes the t
mechanisms compete and in all the studies it has been
adopted. However, due to the difficulties of actual practi
most of them used the simplified versions. In most of t
studies, the temperature factor has not been introduced
the exchange probability, while in the flipping probability
has been only partly combined. Typically for the ferroma
netic Ising model it has been set as Glauber type

Wi5min$1, exp~nEi /KT!%,

Kawasaki type

Wi j 5H 1, nEi j .0,

0, nEi j <0.

In the proposed mechanism the transition and redistri
tion probabilities do not take the simplified versions. Besid
some mathematical aspects such as normalization, their
ference lies in the role of temperature. With the propos
mechanism there is greater influence of heat on the sys
The fact ‘‘order for lower temperature and disorder f
higher temperature’’ is not universally true in the phase d
grams obtained in earlier studies@1–7#. However, we believe
that this expectation will be unshakable if the system is g
erned by the given mechanism. In order to further study
we applied our method to the 1D Ising model. It is we
known that, due to the heat noise, there is only paramagn
phase in the 1D Ising model. The analytical results we
tained confirm this conclusion; however, one increases
energy flux for all temperatures.~The details are in Appendix
A, but we suggest that it be read later for an easier und
standing of our method.! The 1D Ising model governed b
the conventional mechanism has been studied in Ref.@3#
with the approximation method and MC simulation. Furth
application to a 2D Ising model is beyond the scope of t
paper. Neither is better nor worse, since the two mechani
have different characteristics, but we think the comparis
will be interesting and also feasible in practice.

IV. THE KINETIC GAUSSIAN MODEL

In this section we apply the proposed mechanism to
3D kinetic Gaussian model and report our findings with t
phase diagram. One- and two-dimensional cases are q
similar. First we briefly review some basic properties of th
model.

A Gaussian model, proposed by Berlin and Kac, at firs
order to make the Ising model more tractable, is continuo
spin model. It has the same Hamiltonian as the Ising mo
~three-dimensional!,

2bH5K (
i , j ,k51

N

(
w

s i jk~s i 1w, jk1s i j 1w,k1s i j ,k1w!,

~15!
6-3
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where K5J/kBT and (w means summation over neare
neighbors. Compared with the Ising model, it has two ext
sions: First, the spinss i jk can take any real value
(2`,1`). Second, to prevent the spins from tending
infinity, the probability of finding a given spin betweens i jk
ands i jk1ds i jk is assumed to be the Gaussian-type distri
tion

f ~s i jk !ds i jk5A b

2p
expS 2

b

2
s i jk

2 Dds i jk , ~16!

whereb is a distribution constant independent of tempe
ture. Though an extension of the Ising model, the Gaus
model is quite different however. In the equilibrium case,
translational-invariant lattices it is exactly solvable, and la
as a starting point to study the unsolvable models it has
been investigated with the mean-field theory and
momentum-space renormalization-group method.

As an example of the applications of the single-spin tr
sition and the spin-pair redistribution mechanism, we ha
studied a kinetic Gaussian model using both of them se
rately. We summarize its dynamic properties as follows@11–
13#. The inherent dynamical competition of this model is th
the system tries to lower its Hamiltonian with the spins ten
ing to infinity, while the Gaussian-type probability serves
restrict this tendency. Above the critical temperature, the p
vailing heat noise permits only a disordered state, wher
below the critical point some kind of order will appear. O
a

he

ian

03610
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study shows that, on translational-invariant lattices,the dy-
namic critical exponent z51/v52 is independent of spac
dimensionality and the governing dynamical mechanism.

Now we turn to treat the 3D kinetic Gaussian model w
the competing dynamics. The 1D and 2D systems can
treated in a similar way and they have qualitatively the sa
properties. In earlier studies we obtained the time expe
tion of single spin. With the competing mechanism we c
borrow these equations from Refs.@11# and @13#.

~1! With Glauber dynamics.

d

dt
qi jk~ t ![Qi jk

G 52qi jk1
K

b
~qi 21,j ,k1qi 11,j ,k1qi , j 21,k

1qi , j 11,k1qi , j ,k211qi , j ,k11!. ~17!

~2! With Kawasaki dynamics. Since we have changed th
sign before the system Hamiltonian in the redistributi
probability,

2bH5K (
i , j ,k51

N

(
w

s i jk~s i 1w, jk1s i j 1w,k1s i j ,k1w!,

⇒bH5~2K ! (
i , j ,k51

N

(
w

s i jk~s i 1w, jk1s i j 1w,k1s i j ,k1w!,

all the expressions will remain the same if we switchK to
2K. Here we will have to do the same,
d

dt
qi jk~ t ![Qi jk

K 5
1

2@b1~2K !#
b$@~qi 11,j ,k2qi jk !2~qi jk2qi 21,j ,k!#1@~qi , j 11,k2qi jk !2~qi jk2qi , j 21,k!#1@~qi , j ,k11

2qi jk !2~qi jk2qi , j ,k21!#%1
~2K !

2@b1~2K !#
@2~2qi 21,j ,k2qi 21,j 11,k2qi 21,j 21,k!1~2qi 21,j ,k2qi jk2qi 22,j ,k!

12~2qi 11,j ,k2qi 11,j 11,k2qi 11,j 21,k!1~2qi 11,j ,k2qi jk2qi 12,j ,k!12~2qi , j 21,k2qi , j 21,k112qi , j 21,k21!

1~2qi , j 21,k2qi jk2qi , j 22,k!12~2qi , j 11,k2qi , j 11,k112qi , j 11,k21!1~2qi , j 11,k2qi jk2qi , j 12,k!

12~2qi , j ,k212qi 21,j ,k212qi 11,j ,k21!1~2qi , j ,k212qi jk2qi , j ,k22!12~2qi , j ,k112qi 11,j ,k112qi 21,j ,k11!

1~2qi , j ,k112qi jk2qi , j ,k12!#. ~18!
is
to a
nd
the

to-
the
the
This expression is, in fact, not as complex as it seems. E
term in a bracket is a second order derivative ofq, and they
will cancel each other if a summation is taken over all t
spins. Thus( i jkQi jk

K 50.
Then with the competing mechanisms,

d

dt
qi jk~ t !5pQi jk

G 1~12p!Qi jk
K . ~19!

It is natural to first consider using the system Hamilton
ch
H52J(

^ i , j &
s is j

to characterize its behavior. If we find the Hamiltonian
decreasing, then the system is believed to be evolving
ferromagnetic phase; if the Hamiltonian is stable arou
zero, the system must be in a paramagnetic phase; if
Hamiltonian is increasing, then the system is evolving
wards an antiferromagnetic phase. Unfortunately, in
Gaussian model although we can conveniently obtain
exact result for̂ s is j& and the average value,( i j ^s is j&/N

2,
6-4
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we find it difficult to obtain an analytical result of the syste
Hamiltonian. In order to differentiate between these pha
instead we study the following two aspects. First, magn
zation

M ~ t !5
1

N (
k

qk~ t !, ~20!

and second

M 8~ t !5
1

N (
i jk

qi jk8 ~ t !5
1

N (
i jk

~21! i 1 j 1kqi jk~ t !. ~21!

For a pure ferromagnetic phase, if without any extra con
tions, we expect nonzero magnetization, that is to s
M (t)Þ0. At the same time, if the system is divided into tw
penetrating subsets, in one of which the spins havei 1 j 1k
being an odd number, and in the other one the spins hai
1 j 1k being even, then one will find these two subsets
almost identical, and this leads toM 8(t)50. So M (t)Þ0
and M 8(t)50 is the characteristic of the ferromagne
phase. For the pure antiferromagnetic phase, we expect
a situation that the system can be divided into two penet
ing opposing sublattices in the way mentioned above, on
positive spin and one of negative spin. Except the direct
of the spins, these two sublattices are identical. This lead
M 8(t)Þ0 but M (t)50. In the disordered paramagnet
phase, we expect disorder of the whole system and b
M (t) andM 8(t) to be zero. Thus, if we get the evolution o
M (t) and M 8(t), we can decide in which phase the syste
is.

Using Eqs.~19!, ~20!, and ~21! we can write the time
derivative ofM (t) andM 8(t) as

dM~ t !

dt
5

1

N (
k

d

dt
qk~ t !5pS 211

6K

b D M ~ t ! ~22!

and

dM8~ t !

dt
5

1

N (
k

d

dt
qk8~ t !5F2pS 11

6K

b D
16~12p!

6K2b

b2K GM 8~ t !. ~23!

The details of Eq.~23! are given in Appendix B. Because w
want K/b to be positive, the inequality

2pS 11
6K

b D16~12p!
6K2b

b2K
.0

becomes

1

12p
@236141p1A~129622808p11561p2!#,

K

b
,1,

~24!

for 0,p,1.
Figure 1 shows the phase diagram of the 3D kine
03610
s,
i-

i-
y,

e

ch
t-
of
n
to

th

c

Gaussian model. It is divided into several regions by
following three curves:

exp~2K/b!5e21/6, ~25!

exp~2K/b!51/e, ~26!

and

exp~2K/b!5expF2
1

12p
@236141p

1A~129622808p11561p2!#G . ~27!

The phase diagrams for the 1D and 2D models are q
similar.

We know that the critical point of the 3D Gaussian mod
is Kc5b/2d, where d is the space dimensionality. In th
region above line~25!, the temperature is higher than th
critical value. BothM (t) and M 8(t) are approaching zero
exponentially, and this is identified as a paramagnetic ph
The overwhelming heat noise permits no observable mag
tization, and the Hamiltonian is static in equilibrium. Whe
the temperature is belowTc , the heat noise becomes secon
ary and some kind of order appears.

For the region below line~25! and above curve~27!, as
well as that below line~26!, we have exponentially increas
ing M (t) while M 8(t) is approaching zero, and this corre
sponds to the ferromagnetic phase. In this phase,
Glauber-type mechanism prevails and the energy is decr
ing. There is observable homogeneous magnetization, th
rection of which depends on that of the initial magnetizatio

In the region between curve~26! and line ~27! we have
both exponentially increasingM (t) andM 8(t), and it cannot
be simply identified as ferromagnetic or antiferromagne
We give it a name, heterophase. In this region, the Kawas
mechanism and the energy flux control the system, and
energy has a tendency to increase. The spin values are i

FIG. 1. The phase diagram of a 3D Gaussian model with co
peting dynamics, Glauber type with probabilityp, and Kawasaki
type with probability 12p. The system exhibits paramagnet
phase~Para!, ferromagnetic phase~Ferro!, and heterophase~Het-
ero!.
6-5
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esting. Our analytical results show thatM (t)5M (0)eAt and
M 8(t)5M 8(0)eBt. This means that, if the initial phase
ferromagnetic,M 8(0)50, but M (0)Þ0, later we will ob-
serveuM (t)u increasing butM 8(t) staying at zero. If initially
the system is antiferromagnetic,M (0)50, but M 8(0)Þ0,
later we will haveuM 8(t)u increasing butM (t) staying at
zero. If initially a disordered paramagnetic phase is giv
M (0)50, and alsoM 8(0)50, we will get both zeroM (t)
and M 8(t). From this one may get confused—what is t
real picture? How is the energy sure to increase if the s
values are dependent on other conditions? Direct comp
simulation reveals the key. For example, we apply the p
odic boundary condition and initially set the system as

. . . ,11,11,21,11,11,21,11,11,21,11,11,21,11,

11,21,11,11,21,11,11, . . . .

This leads toM (0)Þ0, but M 8(0)50. After 1 sec, it be-
comes~we only give approximate values!

. . . ,0.7,1.1,0.2,0.8,0.6,0.3,0.6,0.6,0.2,0.6,0.6,0.2,0.6,0.6

0.6,0.8,0.2,1.1,0.7, . . . .

After 10 sec

. . . ,9,13,5,17,3,17,3,15,6,11,11,6,15,3,17,3,17,5,13,9, . . . .

After 24 sec

. . . ,2249,6941,26735,12089,210041,13228,

28902,9922,23755,3435,3435,23755,9922,28902,13228,

210041,12089,26735,6941,2249, . . . .

This shows the routine ofself-organization the system
chooses in this specific case, and it is a self-explanatory
ture of how the energy manages to increase whileM 8(t)
50.

However, there is one exception. If at the beginning
system is set in a pure homogeneous ferromagnetic ph
we will find that the system remains in this homogeneo
state. How can one explain this? Actually the system d
have a tendency to increase its energy in this region, b
needs a hint to know exactly how. Here we cite the words
Tome and Oliveira@1#: It is ‘‘the result, in the case consid
ered here, of a far from equilibrium process, namely,
continuous flux of energy into the system. Thus an instabi
of the usual~equilibrium! solutions leads the system towa
states with spatial self-organized structure.’’ The se
organization routine is closely related with a basic pheno
enon of symmetry loss. A system under conditions that l
to paramagnetic phase is like a ball placed on the ground
which all directions are identical. A system set in such
heterophase is like a ball placed on the top of another sph
The upper ball has a tendency to fall down, but the direct
depends on some kind of disturbance. If there is no dis
bance at all, it will stay still. It will even have its energ
increasing if the lower ball is being lifted up. Surely in rea
ity we have never seen a ball stay still on the top of anoth
03610
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because disturbance cannot be avoided. So the discus
here is only to help qualitatively explain this strange pha
and the mechanism hidden behind.

V. RESULTS AND SOME DISCUSSION

In this paper, we have given a systematic formulation
the proposed competing mechanism. The Glauber-t
single-spin transition mechanism with probabilityp simu-
lates the contact of the system with the heat bath and
Kawasaki-type spin-pair redistribution mechanism w
probability 12p simulates an external energy flux. The
two mechanisms themselves are natural generalization
Glauber’s single-spin flipping mechanism and Kawasak
spin-pair exchange mechanism. Thus, on the one hand,
mechanism is in principle applicable to arbitrary system
while on the other hand, our formulation is able to obtain
mechanism that justdirectly combines single-spin flipping
and spin-pair exchangein their original forms ~not simpli-
fied!. Compared with the conventional one, the propos
mechanism does not assume the simplified versions. T
difference lies in the different role the system temperat
plays. ~As we have emphasized before, neither is better
worse, since they are different.! We applied the proposed
mechanism to the 1D Ising model and used the analyt
results to exemplify this difference. With this mechanis
there is greater influence of temperature and the fact, o
for lower temperature and disorder for higher temperatu
will be universally true.

In Sec. IV, we applied this mechanism to the 3D kine
Gaussian model. The 1D and 2D models can be treated
lowing a similar way and have qualitatively the same pro
erties. We usedM (t) and M 8(t) ~their definition given in
that section! to characterize the system. In the phase diagr
of the 3D model, we confirm the expectation, order for low
temperature and disorder for higher temperature. For t
peratures aboveTc , the system evolves to a paramagne
phase. For temperatures lower thanTc , we observe a ferro-
magnetic phase and another heterophase~instead of the an-
tiferromagnetic phase as guessed!. This interesting het-
erophase is the result of the energy flux and se
organization. We have analyzed it in detail in that secti
and hope it will help make clear the self-organization proc
in phase transitions. With regard to the Ising model, we a
hope it will be a good reference when people are trying
solve the puzzling differences between the results yielded
the approximation method and MC simulation.
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APPENDIX A: CALCULATIONAL DETAILS ON THE
KINETIC ISING MODEL

We apply the proposed mechanism to the 1D Ising mod
We derive the expectation of single spin using Eq.~12!,
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d

dt
qk~ t !5pQk

G1~12p!Qk
K .

In this combined form, the Glauber-type term is as Eq.~13!,

Qk
G52qk~ t !1(

$st%
F(

ŝk

ŝkWk~sk→ŝk!GP~$s%;t !,

~A1!

and the Kawasaki-type term is as Eq.~14!,
03610
Qk
K522qk~ t !1(

$s%
F (

ŝk ,ŝk11

ŝkWk,k11~sksk11→ŝkŝk11!

~A2!

1 (
ŝk ,ŝk21

ŝkWk,k21~sksk21→ŝkŝk21!] P~$s%;t !.

~A3!

First we calculate Eq.~A1!.
(
ŝk

ŝkWk~sk→ŝk!5
sk exp@Ksk~sk211sk11!#2sk exp@2Ksk~sk211sk11!#

exp@Ksk~sk211sk11!#1exp@2Ksk~sk211sk11!#
5H 0,sk2152sk11

tanh 2K,sk215sk1151

2tanh 2K,sk215sk11521

5
1

2
~sk211sk11!tanh 2K. ~A4!

So

QG
k 52qk~ t !1(

$s%
F(

ŝk

ŝkWk~sk→ŝk!GP~$s%;t !52qk~ t !1
1

2
~qk211qk11!tanh 2K. ~A5!

Second, we calculate Eq.~A2!,

(
ŝk ,ŝk11

ŝkWk,k11~sksk11→ŝkŝk11!5
sk exp@2K~sk21sk1sk11sk12!#1sk11 exp@2K~sk21sk111sksk12!#

exp@2K~sk21sk1sk11sk12!#1exp@2K~sk21sk111sksk12!#

5H ~sk1sk11!/2,sk5sk11

tanh@2K~sk212sk12!#,sk52sk11
5

sk1sk11

2
1

~sk2sk11!2

4

3F ~sk2121!~sk1211!

4
1

~sk2111!~sk1221!

24 G tanh~22K !

5
sk1sk11

2
1

1

4
~sk212sk122sk21sksk111sksk11sk12!tanh~22K !.

And similarly,

(
ŝk ,ŝk21

ŝkWk,k21~sksk21→ŝkŝk21!5
sk1sk21

2
1

1

4
~sk112sk222sk11sksk211sksk21sk22!tanh~22K !.

So

Qk
K522qk~ t !1(

$s%
F (

ŝk ,ŝk11

ŝkWk,k11~sksk11→ŝkŝk11!1 (
ŝk ,ŝk21

ŝkWk,k21~sksk21→ŝkŝk21!GP~$s%;t !

5
1

2
~qk211qk1122qk!1

1

4
tanh~22K !~qk112qk221qk212qk12!1

1

4
tanh~22K !~^sksk11sk12&

22^sk11sksk21&1^sksk21sk22&!. ~A6!

Thus, combining Eq.~A5! and Eq.~A6! one will get
6-7
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d

dt
qk~ t !5pF2qk~ t !1

1

2
~qk211qk11!tanh 2KG1~12p!F1

2
~qk211qk1122qk!1

1

4
tanh~22K !~qk112qk221qk212qk12!

1
1

4
tanh~22K !~^sksk11sk12&22^sk11sksk21&1^sksk21sk22&!G . ~A7!

In order to decide in which phase the system is, we have suggested two quantities in Sec. IV,

M ~ t !5(
k

qk~ t !

and

M 8~ t !5(
k

~2 !kqk~ t ![(
k

qk8~ t !.

We use their evolving tendency to characterize the system behavior. Obviously,~1! in a homogeneous ferromagnetic phase,
expect uM (t)u/N→1 and uM 8(t)u/N→0; ~2! in an antiferromagnetic phase consisting of two penetrating and oppo
sublattices, we will haveuM 8(t)u/N→1 anduM (t)u/N→0; ~3! in disordered paramagnetic phase, bothM 8(t)/N andM (t)/N
will approach zero.~A detailed analysis can be found in Sec. IV.! With Eq. ~A7! we can get

d

dt
M ~ t ![(

k

d

dt
qk~ t !52p~12tanh 2K !M ~ t !.

Thus

M ~ t !5M ~0!exp@2p~12tanh 2K !t#. ~A8!

At the same time,

d

dt
~2 !kqk~ t ![

d

dt
qk8~ t !5pF2qk8~ t !1

1

2
~2qk218 2qk118 !tanh 2K G1~12p!F1

2
~2qk218 2qk118 22qk8!

1
1

4
tanh~22K !~2qk118 2qk228 2qk218 2qk128 !

1
1

4
tanh~22K !~2^sk8sk118 sk128 &12^sk118 sk8sk218 &2^sk8sk218 sk228 &!G ,

and

M 8~ t ![(
k

d

dt
qk8~ t !5@p~212tanh 2K !1~12p!~221tanh 2K !#M 8~ t !5@221p1~122p!tanh 2K#M 8~ t !.

Thus

M 8~ t !5M 8~0!exp$@221p1~122p!tanh 2K#t%. ~A9!

In the 1D Ising model, as given in Eqs.~A8! and~A9!, M (t) andM 8(t) are both approaching zero exponentially, and
can make the conclusion that, even if one increases the energy flux, the system will stay in the paramagnetic phase a
temperature.

APPENDIX B: CALCULATIONAL DETAILS OF EQ. „23…

Kawasaki-type dynamics,
036106-8
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d

dt
qi jk8 ~ t !5

1

2~b2K !
b$@~2qi , j ,k118 2qi jk8 !2~qi jk8 1qi , j ,k218 !#1@~2qi 11,j ,k8 2qi jk8 !2~qi jk8 1qi 21,j ,k8 !#1@~2qi , j 11,k8 2qi jk8 !

2~qi jk8 1qi , j 21,k8 !#%1
2K

2~b2K !
@2~22qi 21,j ,k8 2qi 21,j 11,k8 2qi 21,j 21,k8 !1~22qi 21,j ,k8 2qi jk8 2qi 22,j ,k8 !

12~22qi 11,j ,k8 2qi 11,j 11,k8 2qi 11,j 21,k8 !1~22qi 11,j ,k8 2qi jk8 2qi 12,j ,k8 !12~22qi , j 21,k8 2qi , j 21,k118 2qi , j 21,k218 !

1~22qi , j 21,k8 2qi jk8 2qi , j 22,k8 !12~22qi , j 11,k8 2qi , j 11,k118 2qi , j 11,k218 !1~22qi , j 11,k8 2qi jk8 2qi , j 12,k8 !

12~22qi , j ,k218 2qi 21,j ,k218 2qi 11,j ,k118 !1~22qi , j ,k218 2qi jk8 2qi , j ,k228 !12~22qi , j ,k118 2qi 11,j ,k118 2qi 21,j ,k118 !

1~22qi , j ,k118 2qi jk8 2qi , j ,k128 !#. ~B1!

Glauber-type dynamics,

d

dt
qi jk8 ~ t !52qi jk8 1

k

b
~2qi 21,j ,k8 2qi 11,j ,k8 2qi , j 11,k8 2qi , j 21,k8 2qi , j ,k118 2qi , j ,k118 !. ~B2!

And then

dM8~ t !

dt
5

1

N (
k

d

dt
qk8~ t !5F2pS 11

6K

b D1~12p!6
6K2b

b2k GM 8~ t !.
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