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In this paper, we have given a systematic formulation of a generalized competing mechanism: The Glauber-
type single-spin transition mechanism, with probabilitysimulates the contact of the system with the heat
bath, and the Kawasaki-type spin-pair redistribution mechanism, with probabilify, 5imulates an external
energy flux. These two mechanisms are natural generalizations of Glauber’s single-spin flipping mechanism
and Kawasaki's spin-pair exchange mechanism respectively. On the one hand, the proposed mechanism is, in
principle, applicable to arbitrary systems, while on the other hand, our formulation is able to contain a
mechanism that just directly combines single-spin flipping and spin-pair exchange in their original form.
Compared with the conventional mechanism, the proposed mechanism does not assume the simplified version
and leads to a greater influence of temperature. The fact, order for lower temperature and disorder for higher
temperature, will be universally true. In order to exemplify this difference, we applied the mechanism to the
one-dimensional Ising model and obtained analytical results. We also applied this mechanism to the kinetic
Gaussian model and found that above the critical point there will be only paramagnetic phase, while below the
critical point, the self-organization as a result of the energy flux will lead the system to an interesting het-
erophase, instead of the initially guessed antiferromagnetic phase. We studied this process in details.
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I. INTRODUCTION In our earlier studies, we have presented a single-spin
transition mechanisnil1,12 and a spin-pair redistribution
In recent years, there have been continuing efforts tomechanisnj13]. These two dynamics are natural generaliza-

wards a clear picture of the self-organization phenomena itions of Glauber’s single-spin flipping mechanism and Ka-
the phase transitions of magnetic systems. Most of the work¢/asaki’s spin-pair exchange mechanism, respectively. They
[1-8] have been concentrated on Ising and Ising-like syshave similar mathematical expressions, and become counter-
tems, governed by two competing dynamics: Glauber'parts of each other in the nonconserved and conserved pro-
single-spin flipping mechanisf®] and Kawasaki’s spin-pair Ce€sses, respectively. As an example of the applications, we
exchange mechanism()], both with a probab|||ty The sys- studied the kinetic Gaussian model with both of them. Our
tem is coupled to a heat bath at a given temperature whilgtudy shows that, in translational-invariant latticdee dy-
being subject to an external energy flux. Glauber’s flippingnamic critical exponent z 1/v =2 is independent of space
mechanism is to simulate the contact of the system with théimensionality and the governing dynamical mechanisn
heat bath. Changing the order parameter, it favors lower syglynamic properties are summarized in Sec. IV.
tem energy. On the other hand, Kawasaki's exchange mecha- In this paper, we formulate the competing dynamics com-
nism is to simulate the influence of the energy flux. KeepingPining the single-spin transition and spin-pair redistribution.
the order parameter conserved, it favors higher system erfss these two mechanisms themselves are universal, the com-
ergy. With these two competing mechanisms and the corré?ined one is also applicable to arbitrary systems, and it can
Sponding master equa’[ion, pe0p|e expect to obtain the evde deemed as a generalization. In Sec. Il, we first briefly
lution of the system. As an exact treatment is not possible foféview the two mechanisms and then give the formulation of
the two-dimensiona(2D) Ising model, consequently Monte the competing mechanism. In Sec. I, we explain the differ-
Carlo (MC) simulation and methods such as the dynamicences between our mechanism and that adopted convention-
pair approximation have been employed. The results obally, taking the 1D Ising model as an example. In Sec. IV, as
tained helped to determine the interesting phase diagram#e chief task of this paper, we apply it to the kinetic Gauss-
(However, people are surprised to find contradictions in théan model and report the findings. In Sec. V we summarize
predictions of MC simulations and the dynamical mean-fieldour study with some discussions.
theory, since both are proved capable of yielding good quali-
tative results in other studies. Though revisions of MC simu- Il. THE COMPETING MECHANISM
lations are made and more accurate versions of the mean-

field theory are presented, the puzzle still remaBis First we briefly review the single-spin transition mecha-

nism and the spin-pair redistribution mechanism.

*Author to whom correspondence should be addressed. Depart- A. Single-spin transition mechanism

ment of Physics, Beijing Normal University, Beijing 100875,  Glauber’s single-spin flipping mechanism allows an Ising
China. Email address: zhujy@bnu.edu.cn system to evolve with spin flipping. In single-spin transition

1063-651X/2002/663)/0361069)/$20.00 66 036106-1 ©2002 The American Physical Society



HAN ZHU, JIAN-YANG ZHU, AND YANG ZHOU PHYSICAL REVIEW E 66, 036106 (2002

mechanisnj11,17, a single spinr; may change itself to any . 1 .
possible valuesg;, and the master equation is Wi(oi—0i)= aiexp[ _BHi( i %> ‘Ti)'
d . .
aP({U},tF—E 2 [Wi(oi—a)P{a}b) Q=2 eXF{—ﬂHi(Ui'% UJ) - @
: Tj T
_Wi(a'i_’a'i)P({o'jiiLa'i 1. (1) One can clearly see that this mechanism favors a lower

Hamiltonian of the system. Based on the master equation,
The transition probability is in a normalized form determinedEg. (1), one can prove that the time expectations of single
by a heat Boltzmann factor, spin and correlation functions are

d _ >
artouOo O o )= "oy, o)+ 34 S

{(i(ﬁ . U‘i)<z (}ikWik(o.ik_)(}ik)>

#k)= i,

} P{oht). (3

Whenn=1, itis d ~
gio(D="2dav+2 2, { 2 o
d R ~ R 0 A (O
GO =—0( 3 |3 Wil P, o
o (4) X Wik wl( 0kThw— 04 Tiew) | PUD), (7)

B. Spin-pair redistribution mechanism . . . .
pin-p whered is the space dimensionality arXl, means a sum-

Kawasaki's spin-pair exchange mechanism allows armation taken over the nearest neighbors.
Ising system to evolve with its nearest neighbors exchanging
their spin values. In spin-pair redistribution mechan[4/8],
two neighboring spinsgjoy, may change to any possible
values, j0y, as long as their sum is conserved, and the With the competing mechanisms, single-spin transition
master equation is with probability p and spin-pair redistribution with probabil-

ity 1 —p, the master equation can be written as

C. The competing mechanism

d ~ -
&P({o},t)=2 2 [—Wj(ojo—0jo)P({c};t)

d
an ;fj VO &P({U}vt):mee_F(l_p)Kme! (8)
+Wj|((}ja'|—>0'j0'|)
.. where the Glauber type
XP{0i4j,012},05,01:1)]. 5
The redistribution probability is also in a normalized form Gme=2> > [~ Wi(ai—0)P({o},t)
determined by a heat Boltzmann factor, T

510 +Wi(0i—a)P({oj.i},01;0)], ©)
WjI(UjUI—’Ujffl):Q—“5a;+al,&j+&. R JFBT
and the Kawasaki type

xexfd — BH;i (05,01 {omimej )], (6)

where the normalization fact@;, is KmeZE 2 [—Wj|(010|—>t}jt}|)P({U};t)
an & .o
91
Q=2 O,y oy X~ BH; (07,01 Ombme )] +Wj (g — o) P{0i4),0140,07,01;,0]. (10

0’j,0’|

(Here it clearly favors a lower system Hamiltonian, but in theThe Glauber-type mechanism is used to simulate the contact
combined mechanism we shall change the sign bedtg of the system with the external heat bath, and the transition
and make it turn to the oppositeThe time expectation of probability is of the form given by Eq$2). This mechanism
single spin is favors lower energy of the system. The spin-pair redistribu-
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tion mechanism is used to simulate the energy flux. The reture into it, we require that the transition be influenced by the
distribution probability given above favors a lower systemheat noise. It is the first requirement that makes the two

Hamiltonian, but what we need here is to the contr&ve
can reverse this tendency if we change the sign b
in the redistribution probabilitylt has the following form:

Wj (O’j0'|—>a'ja'|)

1 “~
= Q_jl5(rj+(r| e exd BH;i (0,0 {Tmim=j.0) ]

(11)

Qji= Z O +ay o+ exfl BH;i(; .01 {Tmbmej)]-

mechanisms compete and in all the studies it has been well
adopted. However, due to the difficulties of actual practice,
most of them used the simplified versions. In most of the
studies, the temperature factor has not been introduced into
the exchange probability, while in the flipping probability it
has been only partly combined. Typically for the ferromag-
netic Ising model it has been set as Glauber type

W;=min{1, exg AE;/KT)},

Kawasaki type

U’j , 0|
This normalized form implies that the tendency is toward a W = 1, AE;>0,
higher system Hamiltonian. Theompetitionis in fact be- 7o, AE;=<O0.

tween the two opposite directions favored by eithercha-

nism

As given above, we have already obtained the expectatio
of single spin with either mechanism. One can prove tha

with competing mechanisms it will be

d G K
G IO=PQH(1-P)Q, (12)
where the Glauber type
QE=—qk<t>+{2} 2 o Wiloy—ay) |P{atit),
g (’.k
(13
and the Kawasaki type
Q= —2dq(t) +2> X, { > o
w {0} | o o
k1 Tk+w
X Wik wl 0kOk w— 0k0kw) [P{ait).  (14)

There are equations available for correlation functions wit
competing mechanisms, but in later studies we find this
single-spin equation is enough to yield satisfying results.

IIl. ISING MODEL

In the proposed mechanism the transition and redistribu-
ion probabilities do not take the simplified versions. Besides
some mathematical aspects such as normalization, their dif-
ference lies in the role of temperature. With the proposed
mechanism there is greater influence of heat on the system.
The fact “order for lower temperature and disorder for
higher temperature” is not universally true in the phase dia-
grams obtained in earlier studigk-7]. However, we believe
that this expectation will be unshakable if the system is gov-
erned by the given mechanism. In order to further study it,
we applied our method to the 1D Ising model. It is well
known that, due to the heat noise, there is only paramagnetic
phase in the 1D Ising model. The analytical results we ob-
tained confirm this conclusion; however, one increases the
energy flux for all temperature€The details are in Appendix
A, but we suggest that it be read later for an easier under-
standing of our methog.The 1D Ising model governed by
the conventional mechanism has been studied in F3Hf.
with the approximation method and MC simulation. Further
application to a 2D Ising model is beyond the scope of this
paper. Neither is better nor worse, since the two mechanisms
hhave different characteristics, but we think the comparison
will be interesting and also feasible in practice.

IV. THE KINETIC GAUSSIAN MODEL

In this section we apply the proposed mechanism to the

As mentioned above, recently great efforts have been cor8D kinetic Gaussian model and report our findings with the
tributed to the Ising model with competing dynamics. Be-phase diagram. One- and two-dimensional cases are quite
cause exact analytical treatment is too hard, most of the studimilar. First we briefly review some basic properties of this
ies have been either approximations or Monte Carlamodel.
simulations. There are some differences between the conven- A Gaussian model, proposed by Berlin and Kac, at first in
tional method and our method. In the following we presentorder to make the Ising model more tractable, is continuous-

our considerations.

spin model. It has the same Hamiltonian as the Ising model

The results one may expect directly depend on the expresthree-dimensional

sion of the transition(flipping, exchange, redistribution

probabilities. We think that there are two requirements: First, N

this probability should contain the Hamiltonian, and thus

naturally favors either higher energKawasaki typée or

lower energy(Glauber type Second, introducing tempera-

_ﬂH:Ki j%:l % Tijk(Ti v w,jk T Tij rw kTt Tij ke w)s
(15
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where K=J/kgT and X,, means summation over nearest study shows that, on translational-invariant latticthe, dy-
neighbors. Compared with the Ising model, it has two extennamic critical exponent 2 1/v =2 is independent of space
sions: First, the spinso can take any real value dimensionality and the governing dynamical mechanism
(—o0,+»). Second, to prevent the spins from tending to Now we turn to treat the 3D kinetic Gaussian model with
infinity, the probability of finding a given spin betweery, ~ the competing dynamics. The 1D and 2D systems can be
andojc +dojj is assumed to be the Gaussian-type distributreated in a similar way and they have qualitatively the same
tion properties. In earlier studies we obtained the time expecta-

tion of single spin. With the competing mechanism we can
b b
floj)daix=\/ Zex% - zgizjk

q borrow these equations from Refdl1] and[13].

Tijk» (16) (1) With Glauber dynamics

whereb is a distribution constant independent of tempera- _ G _ K

ture. Though an extension of the Ising model, the Gaussian ﬁqijk(t)_Qiik— Giji+ E(qiflyj'ﬁq”lvivﬁq"l’l'k
model is quite different however. In the equilibrium case, on

translational-invariant lattices it is exactly solvable, and later 02kt k-1t G ken)- (17

as a starting point to study the unsolvable models it has also ' . .
been investigated with the mean-field theory and the.. (2) With Kawasaki dynamicssince we have changed the

momentum-space renormalization-group method. sign before the system Hamiltonian in the redistribution

As an example of the applications of the single-spin tran-prObab'“ty’
sition and the spin-pair redistribution mechanism, we have N
studied a kinetic Qau;sian mod_el using _both of them sepa- —gH=K 2 > Tiik(Tisw k¥ Tij s wkF Tij sw)s
rately. We summarize its dynamic properties as follghk— k=1 w

13]. The inherent dynamical competition of this model is that
the system tries to lower its Hamiltonian with the spins tend- B
ing to infinity, while the Gaussian-type probability serves to :ﬁH_(_K)i’j;ﬂ % Tik(Tirw, ikt Tij+w kT Tij ktw)s
restrict this tendency. Above the critical temperature, the pre-

vailing heat noise permits only a disordered state, whereaall the expressions will remain the same if we switCho
below the critical point some kind of order will appear. Our —K. Here we will have to do the same,

N

d 1
aQijk(t)EQﬁk:mb{[(mﬂ,j,k_Qijk)—(Qijk_Qi—l,j,k)]+[(Qi,j+1,k_Qijk)_(Qijk_Qi,j—l,k)]+[(Qi,j,k+1

(—K)
—Gijk) — (ijk =i j k-2 1} + m[Z(ZQi—l,j,k_Qi—l,j+1,k_Qi—1,j—1,k)+(ZQi—1,j,k—Qijk_Qi—2,j,k)

+2(20i 1 1j k=it 1j+ 1k~ dirrj— 10 T (20ir1j k= ijk =i+ 25,00 T 20201 j- 1k i j-1k+1— ij—1k—1)
(205 j-1x— Aijk =i j—26) T 20205 jr1x— i j+1kr1— i jr1k—1) T (200 j+ 16— ijk =i j+2)

+2(20i j k-1 i—1jk-1"Ti+1jk-1) T (20 j k-1~ Dijk =i j.k-2) T 2020 j ks 1= Div1jkr1—Di—1j,k+1)
+(2di j k+ 1= Aijk =i j k2] (18)

This expression is, in fact, not as complex as it seems. Each

term in a bracket is a second order derivativegoénd they H= —JZ 0i0j
will cancel each other if a summation is taken over all the WD
spins. ThusS;, Qff = 0.

Then with the competing mechanisms, to characterize its behavior. If we find the Hamiltonian is
decreasing, then the system is believed to be evolving to a
ferromagnetic phase; if the Hamiltonian is stable around
zero, the system must be in a paramagnetic phase; if the
Hamiltonian is increasing, then the system is evolving to-
wards an antiferromagnetic phase. Unfortunately, in the
Gaussian model although we can conveniently obtain the
It is natural to first consider using the system Hamiltonianexact result fo o;0;) and the average valug,;(o;o;)/N?,

d G K
aQijk(t):injk+(1_p)Qijk- (19
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we find it difficult to obtain an analytical result of the system 10 . T . T . T T T
Hamiltonian. In order to differentiate between these phases L Para
instead we study the following two aspects. First, magneti- ggf ]
zation | Ferro
1 o 06r Hetero ]
M(t)= 5 2 qy(t), 20 2
N 5 04
g‘ . -
and second ®
1 1 02 Ferro T
M/ (=5 2 Q)= 5 2 (= 1) g (t). (1)
N ijk N ijk 0.0 L 1 L 1 L 1 L 1 N
0.0 0.2 0.4 0.6 0.8 1.0

For a pure ferromagnetic phase, if without any extra condi- 1-p
E;)ns' \(/)veAexhpect nonzero .fmr?gnetizatio_n,d_th(&jlt dls o say, FIG. 1. The phase diagram of a 3D Gaussian model with com-
0 e(r:()etfati.n gt ;u?ass ;r;’ei:rgﬁél 0:‘ v?/r?é?]tflz?a I:pi:]\/sl ﬁawlgiokmo peting dynamics, Glauber type with probability and Kawasaki
being an odd number, and in the other one the spins havetyloe with probability tp. The system exhibits paramagnetic

. . ! - hase(Parg, ferromagnetic phasé-errg, and heterophaséHet-
+j+k being even, then one will find these two subsets ar%ro)_
almost identical, and this leads td'(t)=0. SoM(t)#0
and M’(t)=0 is the characteristic of the ferromagnetic
phase. For the pure antiferromagnetic phase, we expect su
a situation that the system can be divided into two penetrat-

aussian model. It is divided into several regions by the
lowing three curves:

ing opposing sublattices in the way mentioned above, one of exp(—K/b)=e" 15, (25)
positive spin and one of negative spin. Except the direction
of the spins, these two sublattices are identical. This leads to exp(—K/b)=1/e, (26)

M'(t)#0 but M(t)=0. In the disordered paramagnetic
phase, we expect disorder of the whole system and bothnd
M(t) andM’(t) to be zero. Thus, if we get the evolution of
, o . 1
i'\s/l.(t) andM’(t), we can decide in which phase the system exp(—K/b)zexr{— %[_36+ 41p
Using Egs.(19), (20), and (21) we can write the time
derivative ofM(t) andM’(t) as

+(1296- 2808+ 1561p9)]|.  (27)

dM(t) 1 d B 6K
dt N Zk aqk(t)—p —1+ o M) (22) The phase diagrams for the 1D and 2D models are quite
similar.
and We know that the critical point of the 3D Gaussian model

is K.=b/2d, whered is the space dimensionality. In the
region above ling(25), the temperature is higher than the
critical value. BothM(t) and M’(t) are approaching zero
exponentially, and this is identified as a paramagnetic phase.
6K—b| The overwhelming heat noise permits no observable magne-
+6(1-p) W}M (). (23 tization, and the Hamiltonian is static in equilibrium. When
the temperature is beloil,, the heat noise becomes second-
The details of Eq(23) are given in Appendix B. Because we ary and some kind of order appears.
wantK/b to be positive, the inequality For the region below ling25) and above curvé27), as
well as that below ling26), we have exponentially increas-
K-b ing M(t) while M’(t) is approaching zero, and this corre-
—p( 1+ T) +6(1-p) =0 sponds to the ferromagnetic phase. In this phase, the
Glauber-type mechanism prevails and the energy is decreas-
becomes ing. There is observable homogeneous magnetization, the di-
rection of which depends on that of the initial magnetization.
5 K In the region between curv@6) and line(27) we have
[—36+41p+ \(1296- 2808 + 1561 )]<B<1’ both exponentially increasing (t) andM’(t), and it cannot
(24) be simply identified as ferromagnetic or antiferromagnetic.
We give it a name, heterophase. In this region, the Kawasaki
for 0O<p<1. mechanism and the energy flux control the system, and the
Figure 1 shows the phase diagram of the 3D kineticenergy has a tendency to increase. The spin values are inter-

M) 1 d 6K
NS | e[ 5

1
12p
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esting. Our analytical results show thdi{(t)=M(0)e*'and  because disturbance cannot be avoided. So the discussion
M’ (t)=M'(0)eB. This means that, if the initial phase is here is only to help qualitatively explain this strange phase
ferromagneticM’(0)=0, but M(0)#0, later we will ob- and the mechanism hidden behind.

serve|M (t)| increasing buM’ (t) staying at zero. If initially

the system is antiferromagnetit) (0)=0, but M’'(0)#0,

later we will have|M’(t)| increasing butM(t) staying at V. RESULTS AND SOME DISCUSSION

zero. If initially a disordered paramagnetic phase is given, |4 this paper, we have given a systematic formulation of
M(0)=0, and alsoM’(0)=0, we will get both zerM(t)  {he proposed competing mechanism. The Glauber-type
and M’(t). From this one may get confused—what is thegingle-spin transition mechanism with probabiliy simu-
real picture? How is the energy sure to increase if the spifates the contact of the system with the heat bath and the
values are dependent on other conditions? Direct comput§awasaki-type spin-pair redistribution mechanism  with
simulation reveals the key. For example, we apply the perin opability 1-p simulates an external energy flux. These
odic boundary condition and initially set the system as o mechanisms themselves are natural generalizations of
1411414114141 14141141, Glauber’s single-spin flipping mechanism and Kawasaki's
spin-pair exchange mechanism. Thus, on the one hand, this
+1,-1+141-1+1+1,.... mechanism is in principle applicable to arbitrary systems,
while on the other hand, our formulation is able to obtain a
This leads toM(0)+#0, butM’(0)=0. After 1 sec, it be- mechanism that justlirectly combines single-spin flipping
comes(we only give approximate valugs and spin-pair exchange their original forms(not simpli-
fied). Compared with the conventional one, the proposed
...,0.7,1.1,0.2,0.8,0.6,0.3,0.6,0.6,0.2,0.6,0.6,0.2,0.6,0.6,0.%hechanism does not assume the simplified versions. Their
0.6.0.8,0.21.107... difference lies in the differe_nt role the sys_tem Femperature
plays. (As we have emphasized before, neither is better nor
After 10 sec worse, since they are differentwe applied the proposed
mechanism to the 1D Ising model and used the analytical
...,9,135,17,3,17,3,15,6,11,11,6,15,3,17,3,17,5,13,9 results to exemplify this difference. With this mechanism,
there is greater influence of temperature and the fact, order

After 24 sec for lower temperature and disorder for higher temperature,
will be universally true.
-+, 249,69415-6735,12089; 10041,13228, In Sec. IV, we applied this mechanism to the 3D kinetic

—8902,9922- 3755.3435 3435- 37559922 8902,13228. Gagssian _quel. The 1D and 2D m.od(_els can be treated fol-
lowing a similar way and have qualitatively the same prop-

—10041,12089; 6735,6941;- 249, . . .. erties. We usedM(t) and M’(t) (their definition given in
that sectiohto characterize the system. In the phase diagram

This shows the routine ofelf-organizationthe system  of the 3D model, we confirm the expectation, order for lower

chooses in this specific case, and it is a self-explanatory pigemperature and disorder for higher temperature. For tem-

ture of how the energy manages to increase WMIEt)  peratures abov@,, the system evolves to a paramagnetic

=0. phase. For temperatures lower thBn, we observe a ferro-
However, there is one exception. If at the beginning tha'nagnetic phase and another heteropHassiead of the an-

system is set in a pure homogeneous ferromagnetic phasgferromagnetic phase as guessedhis interesting het-

we will find that the system remains in this homogeneousrophase is the result of the energy flux and self-

state. How can one explain this? Actually the system doesrganization. We have analyzed it in detail in that section,

have a tendency to increase its energy in this region, but &nd hope it will help make clear the self-organization process

needs a hint to know exactly how. Here we cite the words ofn phase transitions. With regard to the Ising model, we also

Tome and Oliveird1]: It is “the result, in the case consid- hope it will be a good reference when people are trying to

ered here, of a far from equilibrium process, namely, thesolve the puzzling differences between the results yielded by

continuous flux of energy into the system. Thus an instabilitythe approximation method and MC simulation.

of the usual(equilibrium) solutions leads the system toward

states with spatial self-organized structure.” The self-

organization routine is closely related with a basic phenom- ACKNOWLEDGMENT

enon of symmetry loss. A system under conditions that lead

to paramagnetic phase is like a ball placed on the ground, fo,EO

which all directions are identical. A system set in such a

heterophase is like a ball placed on the top of another sphere.

The upper ball has a tendency to fall down, but the direction APPENDIX A: CALCULATIONAL DETAILS ON THE

depends on some kind of disturbance. If there is no distur- KINETIC ISING MODEL

bance at all, it will stay still. It will even have its energy

increasing if the lower ball is being lifted up. Surely in real-  We apply the proposed mechanism to the 1D Ising model.

ity we have never seen a ball stay still on the top of anotheWWe derive the expectation of single spin using E®),
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d - IR

GraD=pQE+(1-p)Qx. QA=—20)+2 | X oWigkr 10k 1~ 00k 1)
o} Lo .oura

In this combined form, the Glauber-type term is as B@), (A2)

Qi=—a()+ > | X a W (o —ay) |[P({ahit), *. E Wi k-1( 71— 00k~ 1)1 P({ o).

{‘Tt} ‘}k (rk,(rk,l
(A1) (A3)
and the Kawasaki-type term is as E@4), First we calculate EqAL).

0.0¢-1=—0k+1
S o Wi oexd Kooy 1+ oxi1)]—oexd —Ko(oy-1+ oyi1) ] tanh &K, o 1= oyoq=1
= = Ok 1= O 1™
= T T Tk exdKo(oy-1+ oy 1) ]+ exd —Ko(og- 1+ oy1)]

Tk

_tanh 2<!0-k*l:0-k+l: -1

= %(O’k_l‘{‘ O'k+1)tanh X. (A4)
So
- - 1
Qe=-al+2 {Z crkwk(akwk)}P({a}:th ~ () + 5 (Gk-1+ Qs ) tanh X. (A5)
T a.k

Second, we calculate E¢A2),

o exf —K(oy_ 10kt 0y 101 2) |+ 0y 1 €XH —K(0o 1041+ 0oy 2) ]
exd —K(oy-10¢t o101 2) ]t exd —K(oy_ 101+ oxoyi2) ]

) E T Wi k4 1(0KOk 11— OO 1) =

Ok Ok+1
_[(O-k+0-k+l)/2!0-k:0-k+l _ O-k+o-k+1 (O-k_o-k+1)2
tant —K(oy- 1= 0k 2)],0¢= — 0x+1 2 4
(ok_1=D)(okiotl) (o1t (oks—1)
k-1 k+2 k-1 k+2 tank(— 2K)
4 -4
Uk+0-k+l 1
=——  F Z(O'k—l—a'k+2_0'k—10'k0'k+1+Uk0k+10'k+2)tan|”(—2|<)-
And similarly,
~ A A 0'k+0'k,1 1
2 Uka,k—l(UkUk—1—><Tk<Tk—1)=TJFZ((Tkﬂ_Uk—z_<Tk+1ffkffk—1+UkUk—Nk—z)tanr(_zK)-
Ok Ok—1

So

QE=_ZQk(t)+{2 > (}ka,k+1(0'k0'k+l_’(}k(}k+1)+AZ oWy k- 1(0k0—1— 0y0—1) | P{a}it)

Ok Ok+1 Ok:0k-1
1 1 1
= E(Qk—1+ Qk+1~ 20k) + Ztanﬁ_ZK)(Qk+1_Qk—2+ Ok-1—Ok+2) + Ztanh(_ZK)(<<Tk<Tk+1Uk+2>
—2(0k+10k0k-1) T(OTkTk-10k-2))- (A6)
Thus, combining Eq(A5) and Eq.(A6) one will get
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d 1 1 1
an(t): P| —dk(t)+ 5 (G- Ok+ptanh X | +(1— p)[E(leJr Ok+1— 20k) + Ztanf{ —2K)(k+1~ k-2 dk—1— A+2)
1

+ 4tanh( = 2K) (01014 10%42) = 2( 0410101 1) H (01T 101-2)) |- (A7)

In order to decide in which phase the system is, we have suggested two quantities in Sec. 1V,
M(D)=20 au(t)
and
M/ (=2 (=) D=2 ailD).

We use their evolving tendency to characterize the system behavior. Obvidyistya homogeneous ferromagnetic phase, we
expect|M(t)|/N—1 and|M’(t)[/N—0; (2) in an antiferromagnetic phase consisting of two penetrating and opposing
sublattices, we will havéM ' (t)|/N—1 and|M(t)|/N—0; (3) in disordered paramagnetic phase, bieth(t)/N andM (t)/N

will approach zero(A detailed analysis can be found in Sec.)IWith Eq. (A7) we can get

d _s d B
aM(t)= 4 mqk(t)——p(l—tanhZK)M(t).

Thus
M(t)=M(0)exd — p(1—tanh K)t]. (A8)

At the same time,

d d 1 1
&(—)ka(t)E aq&(t)= p| —d(t)+ 5(—Q1’<71_Q|’<+1)tanh K|+(1- P){E(—QLl_QQH_ZQL)

1
+Ztank(—2K)(—q|’(+1—q|i_2—q{<_1—q{<+2)
1 ! ! i ! ! ! ! ! !
+Ztam(_2K)(‘<‘Tk‘7k+10k+2>+2<Uk+1UkUk—1>_<¢Tk0k—10k—2>) ;
and
! d ! ! !
M (t)E}k: mqk(t)=[p(—l—tanh2K)+(1—p)(—2+tanh2K)]M (t)=[—-2+p+(1—2p)tanh KX]M'(1).
Thus

M'(t)=M'(0)exp{[ —2+p+(1—2p)tanh X]t}. (A9)

In the 1D Ising model, as given in Eg&A\8) and(A9), M(t) andM’(t) are both approaching zero exponentially, and we
can make the conclusion that, even if one increases the energy flux, the system will stay in the paramagnetic phase at arbitrary
temperature.

APPENDIX B: CALCULATIONAL DETAILS OF EQ. (23

Kawasaki-type dynamics,
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d ! 1 ! ! ! ! ! ! ! ! ! !
&qijk(t): mb{[(_qi,j,k+l_qijk)_(qijk+qi,j,k71)]+[(_qi+l,j,k_qijk)_(qijk+qifl,j,k)]+[(_qi,j+1,k_qijk)

—-K
— (a1 1+ m[z( =201k A 11k A -1 1) T (—20( 1k A~ A -2 1)

+2(=20{ s 1k i+ 1jr 1k Ai+1j—100) T (204 1)k~ ik~ Ai+2j0 T 20— 200 j_ 1= i j— 1k 1~ O j—1x-1)
(=200 1k A=A 20 T 2020 1k A 1k 1= A k-1 T (=20 o 16— ik — A j+2%)
+2(=20] j k-1 A1k 1~ A1k ) H (7200 o1~ A= jk-2) T 2(—20 k1~ i1 ke 1~ Ai— 1k 1)
(=200 j ke 1~ A~ A j ks 2) - (B1)

Glauber-type dynamics,

d k
aq{jk(t) q|]k+ ( q| 1,k q|+l] k™ QIJ+lk QIj 1k q|]k+1 QIjk+l) (82)
And then
dM(t) 12d 1+6K_|_1 66K— M (0,
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